This is a non-IMPACT record, meaning that access to the data is not controlled by IMPACT. For access, see the directions below.

Disclaimer:
This Resource is offered and provided outside of the IMPACT mediation framework. IMPACT and the IMPACT Coordination Council/Blackfire Technology, Inc. expressly disclaim all conditions, representations and warranties including but not limited to Resource availability, quality, accuracy, non-infringement, and non-interference. All Resource information and access is controlled by entities and under terms that are external to the IMPACT legal framework.

Summary

DS-1257
Anomaly Detection Dataset(CSE-CIC-IDS2018)
External Dataset
External Data Source
University of New Brunswick
Unknown
Unknown
55 (lowest rank is 55)

Category & Restrictions

Other
denial of service, cyber attack, intrusion detection, cyber defense, malicious traffic
Unrestricted
true

Description


This project developed a systematic approach to generate diverse and comprehensive benchmark datasets for intrusion detection resulting in a dataset containing multiple different attack scenarios.

The dataset includes seven different attack scenarios: Brute-force, Heartbleed, Botnet, DoS, DDoS, Web attacks, and infiltration of the network from inside. The attacking infrastructure includes 50 machines and the victim organization has 5 departments and includes 420 machines and 30 servers. The dataset includes the captures network traffic and system logs of each machine, along with 80 features extracted from the captured traffic.

Additional Details

N/A
false
Unknown
cybercrime, server, heartbleed, spamming, data mining, bot, anomaly detection dataset(cse-cic-ids2018), dos, anomaly detection, transport layer security, external data source, servers, 1257, vmware thinapp, malware, virtualization software, data security, vmware, inferlink corporation, internet security, denial of service attack, cyberwarfare, intrusion detection system, cyberattack, botnet, internet relay chat, exploit